Hard exclusive vector meson production: Mechanism and GPD description

C. Weiss (JLab), MENU2010, Williamsburg, 02–Jun–10

- → Transverse quark/gluon imaging of nucleon
- \rightarrow Spin/flavor structure of GPDs
- \rightarrow Meson structure

• Mechanism of high– Q^2 meson production

Small–size configurations ↔ color transparency Challenges in quantitative implementation Tests of reaction mechanism

- Gluon–dominated region $W>10\,{\rm GeV}_{\rm HERA,\ COMPASS,\ EIC}$

Reaction mechanism: *t*-slopes, universality, α' GPD-based description

• Quark exchange region $W \sim {\rm few~GeV}_{\rm JLab~6/12~GeV,~EIC}$

 $\text{Comparison } \rho^+ \leftrightarrow \rho^0, \omega \leftrightarrow \phi \quad \text{CLAS data: Fradi}$

Missing strength from scalar $q\bar{q}$ exchange: Chiral symmetry breaking

Mechanism of high– Q^2 meson production

• Partonic mechanism at high Q^2

 $Q^2 \gg$ hadronic scale: Meson produced predominantly in $q\bar{q}$ configuration of transverse size $r \sim 1/Q$

 $Q^2 \rightarrow \infty$: pQCD interaction, factorization theorem Brodsky et al. 94; Collins, Frankfurt, Strikman 96

Target structure in GPDs: Universal, process-independent

• Quantitative questions

Distribution of sizes/configurations for given Q^2 ? Effective QCD scale, finite-size corrections

Role of different partons/exchanges? Quark vs. gluon GPDs in ρ^0

Partonic kinematics $x_{1,2}$: Scattering from quarks vs. $q\bar{q}$ pair knockout? Re/Im of amplitude

... should be addressed before detailed modeling!

- → Need experimental input: Kinematic dependences, comparison of channels
- → Model–independent tests of reaction mechanism

Gluon-dominated region: Mechanism I

meson

target

• Simplifications at $W > 10 \,\mathrm{GeV}$

Gluon exchange dominant in $\rho^0 \leftrightarrow \phi, J/\psi$

Coherence length $\gg 1~{\rm fm}$: Dipole picture in nucleon rest frame

Im A \gg Re A: DGLAP region of gluon GPD

• Test approach to small-size regime

 Δ_T^2 slope measures transverse size of interaction region: Decreases at large Q^2 , becomes universal

Seen in HERA data!

• Further tests

 Q^2 dependence, σ_L dominance $\phi: \rho^0 = 2:9$ from SU(3)

Gluon-dominated region: Mechanism II

 $\sigma \sim W^{4\alpha'_{\rm soft}t}$

 $\alpha'(Q^2) \ll \alpha'_{\rm soft}$

• Test reaction mechanism through W-dependence: Changes with t through effective Regge slope α'

Soft process: Pomeron trajectory

Hard processes: $\alpha'(Q^2) \ll \alpha'_{\rm soft}$, drops with Q^2 ,

Seen in HERA data!

• Q^2 -dependence of α' explained by DGLAP evolution

Frankfurt, Strikman, CW 04; Müller at al. 04

Gluon-dominated region: GPD description

 Successful GPD-based phenomenology including finite-size effects

Dipole picture with size distribution Frankfurt, Strikman, Koepf 95 Hard scattering with intrinsic k_T VGG 98; Kroll, Goloskokov 05+

• Lower energies

 ϕ still gluon–dominated at JLab energies Nucleon gluonic consistent with HERA $_{\rm Frankfurt,\ Strikman\ 02}$

 ρ^0 : Quark exchange – new challenges!

Quark exchange region: Mechanism

• Comparison $\rho^+ \leftrightarrow \rho^0 \leftrightarrow \phi$: Quark exchange!

Approximate *u*-quark dominance $\rho^0: \omega: \rho^+ \sim 1:1:2$

• Valence quarks or $q\bar{q}$ pair?

 $\label{eq:W} \begin{array}{l} W \text{ dependence at } W < 4 \, \mathrm{GeV} \\ \text{suggest spin-0 exchange} \\ \text{Guidal, Morrow: Modified D-term in GPD?} \end{array}$

Chiral symmetry breaking: Correlated spin–0 pairs in nucleon

Most likely $q\bar{q}$ exchange with non-perturb. interactions ("soft mechanism")

Scattering from quark

Knockout of $q\overline{q}$ pair

Quark exchange region: Mechanism

• t-slopes and their Q^2 dependence

Interpretation more difficult: exponential fits dominated by large $|t| \sim 1 - 2 \text{ GeV}^2$ Possibly factors $\sqrt{-t}$ from nucleon helicity flip Approach to small-size regime at large Q^2 ? ... Need also low- Q^2 data!

Summary

• Experimental input essential for understanding reaction mechanism of exclusive meson production

Not "GPDs or not GPDs," but quantitative questions

Kinematic dependences more important than pushing for highest Q^2

- Successful GPD-based phenomenology in gluon-dominated region Substantial finite-size effects at Q² ~ few GeV², physically motivated No reason why it should not work at lower energies!
- New insights into reaction mechanism from CLAS ρ⁺/ρ⁰/ω/φ data Likely qq̄ exchange with non-perturbative interactions Toward a partonic description of meson production at JLab 6 and 12 GeV!